

2014 Annual Symposium

Singapore-Berkeley Building Efficiency and Sustainability in the Tropics

Costas J. Spanos Andrew S. Grove Distinguished Professor Department of EECS, UC Berkeley Director and CEO, Berkeley Educational Alliance for Research in Singapore

KHA

BERKELEY EDUCATION ALLIANCE FOR RESEARCH IN SINGAPORE LIMITED

A Partnership

CREATE BERKELEY EDUCATION ALLIANCE FOR RESEARCH IN SINGAPORE LIMITED

Why Focus on Smart Tropical Buildings?

Zones where year-round mean temperature is above 18 °C (64 °F).

- Cooperative optimization of the interactions between the Grid, the Building and its Occupants, as an Ecosystem.
- Flexible, constrained optimization of energy consumption, CO₂ emissions, productivity, safety, comfort, healthfulness, and the entire building lifecycle.

The SinBerBEST View

¢,

Buildings respond to demand from occupants & processes

Information technology across the program

Building occupancy modeling using inhomogeneous Markov Chains

- Building occupancy modeling in multi-occupant single-zone (MOSZ) and multi-occupant multi-zone (MOMZ) scenarios.
- MOSZ our model outperforms agent-based model.
- MOMZ, our model performs well for first arrival, and trend of total occupancy.

0.3

ية ^{0.2}

0.1

0

January 8, 2014

HVAC Control and Optimization

- ACB primary design
 - Reduction of material thickness 28%
 - Increased cooling Efficiency
 - Ease of assembly with customer requirements
- Distributed optimal scheduling in precooling and pre-ventilation
- Scenario-based distributed control for temperature regulation in the presence of random disturbances

Liquid desiccant dehumidification system

- Test bed
 - High energy efficiency by integrating with VCRS
- Soft sensing
 - No hardware cost
 - Real-time concentration prediction
 - RE of prediction ≤10%
- Dynamic modeling of LDDS
 - Simple and high accuracy
 - Wide operating range
 - No iterative computations

- Privacy-aware Identification of personal indoor temperature valuations
- Optimal design of demand response programs
- Accurate model and prediction of demand: help power market operation

- Extension: *utility learning model predictive control*
 - real-time learning of a customer's utility function
 - the controller optimizes its strategy based on the learning
 - data analytics for modeling and control of personalized systems

Particle volume

Protection in buildings from haze aerosol

Energy-efficient thermal environments

Concept 1: Efficient thermal conditioning focuses on meeting human needs (rather than needs of unoccupied building spaces).

Concept 2: High air movement that creates draft in cool conditions is pleasant in warm environments.

Concept 3: Occupant control improves occupant satisfaction.

Particle Monitors as Activity Detectors

Fig. 8. Timeseries of filtered data over 7.8hr experiment. Top: Green lines mark camera obstruction occurrences and magenta line is the filtered camera occurrence rate. Bottom: Filtered $\geq 2.5 \mu m$ outputs from DSM501A (average of 5).

Energy-efficient Building Envelope

SOLAR TIME at 12pm / San Francisco 2013

BUILDING ENVELOPE

TYPICAL COMPOSITE PANEL

Summer

A Light Concentrating Layer (Compound Parabolic Cones, CPC) B Light Conduit Layer (Translucent Concrete, TC)

Fall

C Insulation Layer

Spring

D Light Scattering Layer

Winter

Studies on Daylight Harnessing

Manufacturability and Mechanical Properties of **Energy Efficient Translucent Concrete Panels**

Finished OF cage

Finished formwork

Adding plasticizer

Placing & vibrating mortar Curing in the fog room TC panels after unmolding

Sanding

Construction Steps

Under the sky

Under the sun

Cvlinders Average comp.

strength: NWM = 39.1 MPa LWM = 58.8 MPa

Cubes Average comp. strength: NWM = 49.1 MPa LWM = 53.0 MPa

Cvlinder of LWM Cube of LWM LWM: Light Weight Mortar, NWM: Normal Weight Mortar

Stress-Strain Curves of NWM

70 CY1-S (MPa) 60 CY2-S CY3-S Stress (50 CY4-S 40 CY5-S -- CY6-S 5 30 20 Compr 10 2 4 Strain x 10⁻³ **Mechanical properties**

Stress-Strain Curves of LWM

18

January 8, 2014

SinBerBEST Overview

Application of High Performance Green Hybrid Fiber Reinforced Concrete Double Skin Façade Systems

- Steel rebar in conventional solid façade replaced by fiber reinforced polymer bars.
- Cement replacement by 60% waste materials (45% slag + 15% fly ash).
- Total thickness of 120 mm remains the same (2x45 mm + 30mm air gap)

Photocatalytic Building Coating Materials

Effective removal of black carbons on building surface

Building coating with 0% TiO₂:

- 1. without soot loading,
- 2. with soot loading,
- 3. after **50 hrs** of light exposure

Building coating with 40% TiO₂:

- 1. without soot loading,
- 2. with soot loading,
- 3. after **50 hrs** of light exposure, photocatalytic removal of black carbon by TiO₂ is demonstrated

3

Energy-Efficient, Insulating Structural Materials

- Lightweight
- Low thermal conductivity
- Sufficient strength and elastic modulus
- Using by-product from thermal power plants

	Density, kg/m ³	Thermal conductivity, W/mK	Reference/ remark
Ordinary concrete	~2300	1.5-3.5	Mindom et al
Lightweight concrete	1360-1840	0.51-0.95	2003
Air	-	0.03	
Lightweight cement composite	1415	~0.3	On-going work, 28-d strength ~50MPa

Integrative Test Bed Design

6. Permanent air tight partition Wall

12. Under Floor Air Duct

1. 2.

3.

4.

5.

Integrative Test Bed Design

Open source test bed model: Integrating Berkeley, Tsinghua and CREATE Test beds

CO2 Sensor

- A smart office space to demonstrate coexistence of experimental and off-the-shelf sensors/actuators
- Create inter-operability amongst subsystems by protocol translation
- Local devices connected to a private network to guarantee security
- Users access sensor data and operate devices through augmented reality humanenvironment –interface (HEI).

SinBerBEST Overview

January 8, 2014

2014 SinBerBEST Symposium

Wednesday, 8 January 2014

Session Chair: Prof. Khalid Mosalam, University of California, Berkeley	
09.00 - 09.20	Welcome Remarks and Overview
	Prof. Costas J. Spanos, BEARS Director and SinBerBEST Program Leader
	University of California, Berkeley
09.20 - 09.40	Thrust 1 – Tuneable Integrated Building Model
	Prof. Alexandre M. Bayen, University of California, Berkeley
09.40 - 10.00	Thrust 2 – Multilevel Optimal Control
	Prof. XIE Lihua, Nanyang Technological University
10.00 - 10.30	Tea Break & Poster Session
Session Chair: Prof. HU Guoqiang, Nanyang Technological University	
10.30 - 10.50	Thrust 3– High Confidence Building Operating System
	Prof. TSENG King Jet, Nanyang Technological University
10.50 - 11.10	Thrust 4 – Human-Building Interaction and the Environment
	Prof. William Nazaroff, University of California, Berkeley
11.10 - 11.30	Thrust 5 – Materials, Design, and Lifecycle
	Prof. Khalid Mosalam, University of California, Berkeley
11.30 - 11.50	Thrust 6 – Cyber-Physical Test Bed
	Prof. Khalid Mosalam. University of California. Berkeley (tentative)
11.50 - 13.00	Lunch and Poster Session

Session Chair: Prof. YUNG C. Liang, National University of Singapore

13.00 - 13.45	Keynote Lecture – Solar power – getting ready for the conquest of the world
	Prot. Armin Aberie, Solar Energy Research Institute of Singapore
13.45 - 14.00	SinBerBEST Research Paper – A Distributed Optimization Method in Scheduling of ACMV
	Precooling Operations for Energy Saving
	Dr. SU Yang, Nanyang Technological University
14.00 - 14.15	SinBerBEST Research Paper – Smart Metering for Aiding Building Management Systems
	Mr. Krishpapand K. R. National University of Singapore
14.15 - 15.00	Keynote Lecture – Unveiling the Built Environment: Energy Efficiency and Indoor
	Environmental Quality
	Prof. Stefano Schiavon, University of California, Berkeley
15.00 - 15.15	Prof. Stefano Schiavon, University of California, Berkeley SinBerBEST Research Paper – Transport, transformation, and energy efficient control of air
15.00 - 15.15	Prof. Stefano Schiavon, University of California, Berkeley SinBerBEST Research Paper – Transport, transformation, and energy efficient control of air pollutants in tropical buildings
15.00 - 15.15	Prof. Stefano Schiavon, University of California, Berkeley SinBerBEST Research Paper – Transport, transformation, and energy efficient control of air pollutants in tropical buildings Dr. Elliott Gall, Nanyang Technological University

Panel Discussion Moderator: Prof. William Nazaroff, University of California, Berkeley

15.45 - 16.45	Panel Discussion- Metrics for Building Performance and Sustainability
---------------	---

Thursday, 9 January 2014

Session Chair: Prof. Claudia Ostertag, University of California, Berkeley

09.00 - 09.45	Keynote Lecture – Occupants as Partners in Energy Savings - Intelligent Dashboards for Communication, Expert Consulting and Control Prof. Vivian Loftness, Carnegie Mellon University
09.45 - 10.00	SinBerBEST Research Paper – Multi-Functional Building Materials for Energy Efficiency Dr. Vanessa Rheinheimer, National University of Singapore
10.00 - 10.30	Tea Break & Poster Session

Session Chair: Prof. YANG En-Hua, Nanyang Technological University

10.30 - 11.15	Keynote Lecture – Residential Thermal Comfort And Patterns Of A/C Usage
	Prof. Richard de Dear. The University of Sydney
11.15 - 11.30	SinBerBEST Research Paper – Innovative Facade System for Sustainable and Energy Efficient
	Buildings
	Mr. Rotana Hay, University of California, Berkeley
11.30 - 11.45	SinBerBEST Research Paper – A Social Game for Energy Reduction
	Mr. Ioannis Konstantakopoulos, University of California, Berkeley
11.45 - 12.00	SinBerBEST Research Paper – New Building Envelope for Energy Efficient Lighting
	Ms. Nuria Casquero Modrego, University of California, Berkeley
12.00 - 13.00	Lunch & Poster Session

Session Chair: Prof.	YU Liva. National University of Singapore
13.00 - 13:45	Keynote Lecture – Singapore haze 2013: Particle exposures and building protection factors
	Prof. Victor CHANG, Nanyang Technological University
13.45 - 14.00	SinBerBEST Research Paper – PDE-Based Modelling and Estimation of the Humans' Effect in
	the CO2 Dynamics of a Conference Room
	Mr. Kevin Weekly, University of California, Berkeley
14.00 - 14.15	SinBerBEST Research Paper – Dynamic Market for Distributed Energy Resources in the
	Smart Grid
	Mr. Edwin Chan, Nanyang Technological University
14.15 - 14.30	SinBerBEST Research Paper - Dynamic Contracts with Partial Observations: Application to
	Indirect Load Control
	Mr. Insoon Yang, University of California, Berkeley
14.30 - 14.50	Keynote Lecture - BCA Progress in Developing a Rotating Testbedding Facility
	Joffeny Neng/ Stephen Mok, Building and Construction Authority
14.50 - 15.05	SinBerBEST Research Paper Presentation: Computational Models of Energy Efficient Facades
	for Daylighting
	Mr. Aashish Ahuja, University of California Berkeley
15.05 - 15.45	Tea Break & Poster Session

Panel Discussion Moderator: Prof. Alexandre Baven, University of California, Berkeley	
15.45 - 16.45	Panel Discussion – Disaster Prevention for Sustainable Buildings
16.45 - 17.00	Closing Remarks